
The Audio Tie Project
BY: Rouien Zarin

MA Interaction Design (Year 2)
Umea Institute of Design

Introduction

Intentions

Inspiration

Ideation

Day 01 - Creating a Processing Sketch

Day 02 - Working with Zigbee over Serial

Day 03 - Creating a Working Prototype

Day 04 - Communicating through Zigbee’s

Day 05 - Soldering Madness

Day 06 - Embedding the Technology

Tie Construction

Final Result

The Week at a Glance

Resources

01

02

03

04

05

06

08

09

10

11

12

13

14

15

Table of Contents

The Audio Tie Project

A one week project exploration of creating a wireless audio level meter
and deploying it at an event or function where there is a DJ and lots of
people.

Each tie is associated with a specific level in the Audio Spectrum and
moves in real-time in relation to the music at the venue.

The tie’s are completely wireless using a radio transmitter to get the signal
from the DJ source. This gives the tie’s a range of up to 1 mile (pending
obstacles).

Each tie is powered by an ordinary 9V battery, giving the wearer the
ability to move freely throughout the venue with the technology hanging
around their neck.

Special Thanks

I would lke to thank Camille Moussette our tutor and lecturer for his
guidance and support in addition to Oskar Fjellström.

Introduction

01

To realize this project I connected a computer to the Dj’s sound signal and
analysed the sound using processing, then splitting it into 5 hertz
averages to be sent over Serial to an Xbee device and finally broadcasted
wirelessly to 5 different people.

Each person receiving these broadcasts had a circuit board with Xbee and
Arduino Drving LEDs which displayed the audio information in real-time.

Another idea was also to have a signal reading so that if the signal
strength of the Xbee’s is weak then the leds get dimmer. For example
when the volunteers get closer to the DJ booth the leds are at their fullest
strength, but dims the further they are away from the source.

The materials required to wire five people:

A Bit about the Hardware and Software

Processing is an open source programming language and environment for
people who want to program images, animation, and interactions.
more info at www.processing.org

XBee 802.15.4 and extended-range XBee-PRO 802.15.4 are low-power
radio transmitters/receivers that use the IEEE 802.15.4 networking protocol
for fast point-to-multipoint or peer-to-peer networking.
more info at www.digi.com

Arduino is an open-source electronics prototyping platform based on
flexible, easy-to-use hardware and software.
more info at www.arduino.cc

LEDs in Different colours
10 Red, 6 Green and 6 Yellow / Tie

5 x Arduino mini’s

6 x Xbee transmitters

1 x Computer, running
the processing sketch

5 x 9V Batteries

1 x USB to Serial converter

1 x sound source

02

Intentions

Die Roboter

My first reason for choosing this approach vs. some of the other idea’s I
had was to really stick with the wireless theme and I also did not want
a computer or LCD projector to play a central role in the design.

Also being a product of the 80’s I grew up with bands like Kraftwerk
who used a tie with some leds in a music video called ‘Die Roboter’.
Although the tie’s were not actually linked to the music, it was still an
interesting approach back then as it was an early example of the merg-
ing of electronics and fabrics.

You can see the music video here on youtube.

Kraftwerk - Die Mench Maschine

Inspiration

03

Concept Sketches

I sketched out an idea of how the setup might look like. The first approach
was to have the LEDs embedded in T-shirts to show the audio. But since
the venue was Halloween, most people would have a costume and there-
fore the T-shirts weren’t going to fit well with the costumes.

As a result I chose to look at embedding the Leds in Tie’s. Because of the
shape of the ties, they leant themselves well to the
long thin bars of an audio meter. Also they could be temporary, easy to put
on and take off.

Data Transfer

The other thing I looked at was data transfer and how I was going to actu-
ally get the audio signal to each Tie. After reading abit about the Zigbee’s I
decided to come up with my own protocol for activating the LED sequence
for each Tie. In the example below, 1 signifies the ID number of the tie.

Rough Sketch of Layout
and Data Formatting

04

Ideation

1a*

1b*

1c*

1d*

1e*

1f*

1g*

1h*

1i*

1k*

I first started working with Processing and the Minim Libraries to ana-
lyze sound signals. Within a day I had a line going to my Mic-in port and
visually displaying an equalizer in the Processing output window.

Then it was a matter of connecting the Xbee base station (via a Com-
Port) to the computer and identifying which ComPort it was attached to
in the Sketch.

In the above snippet, the available serial ports are printed out in the
output window as a list. You then look for the right ComPort Number
that your device is attached to. In this case COM9 maps to Serial 11.
Then you update the code accordingly and the sketch should be able to
communicate to your Xbee device.

*Tip, double check your transfer speeds. If you are getting some
strange characters in your debug Arduino eg. @#$# then chances are
your baud rate is incorrect.

Processing the Audio Source

Using Device Manager (Vista)
to determine the right ComPort

Day 01 Creating a Processing Sketch

05

void setup()
{
 size(512, 300);
 frameRate(30);
 // ###### get the serial ready for Xbee ##
 String portName = Serial.list()[11];
 println(Serial.list());
 myPort = new Serial(this,portName, 19200);
// ####### Done ############################
 height3 = height/3;
 height23 = 2*height/3;
 // always start Minim
 // minim = new Minim(this); // mac only
 Minim.start(this);
// load line in, default buffer is 1024
 djsource = minim.getLineIn(Minim.STEREO, 1024);

Day 02 Working with Zigbee over Serial

06

In the beginning, I had the Arduino connected to the computer and I was
controlling my LEDs using processing.

I had a Xbee configured with transfer speed and unique ID and I had a
base station configured to broadcast, then came the task of sending data
over serial through the Base station so that it would be picked by my Xbee
slave.

Debug Mode

The way I was able to see what data was being sent to my Xbee slave was
to use another arduino and the softSerial library included with Arduino
0007 and later.

Using the above code I was able to plug into ports 3, and 2 of the Arduino
receiving data, and opening a listening connection on the ComPort that
the debug Arduino is connected to. Then it was just a matter of using
debug.println to print out values to my debug Arduino, and it
should show up in serial monitor program that you have opened.

Xbee Breakout Board

Arduino Sketch

#include <AFSoftSerial.h>
#include “string.h”

AFSoftSerial debug = AFSoftSerial(3, 2);

void setup() {
 // configure serial communications:
 Serial.begin(19200);
 // my own debug serial port
 debug.begin(9600);
 debug.println(“I’m awake”);
 pinMode(13,OUTPUT);
 blink();
 blink();
 blink();
 debug.println(“Configuring Module”);
 // set XBee’s parameters
 setupXbee();
 debug.println(“Configuration done”);
}

Configuring an Xbee Base Station

The Base station was programmed using a console/terminal program like
Zterm (mac) goSerial (pc), Putty (pc), HyperTerminal (pc). *note: needs to
be plugged into the computer with a serial - USB converter.

+++ 		 // (is the instruction to enter command mode)

ATRE 		 // (restore config to defaults)
	
ATID0 		 // sets the Personal Area PAN ID.
		 // Change ID if you want to create your own network (this is a zero)

ATMY0 	 // Sets the module ID address. Must be unique (this is a zero also)

ATDLFFFF	 // Sets destination address to broadcast to the whole PAN network.

ATBD4		 // Sets the interface data rate to 19200. BD3 is the default with 9600.

ATWR		 // Writes the changes/settings to memory

ATCN		 // Exits command mode

Configuring an Xbee Slave

The Xbee Slave Nodes were programmed using an Arduino Sketch. Since
you can emulate the inputs using programming rather than typing manu-
ally.

This saves time and you can keep track of what was programmed into the
Xbee chip.

Various Xbee RF Chips
Arduino Xbee Config Sketch

void setupXbee() {
 Serial.print(“+++”); //command mode:
 delay(1100);
 i = readUntil(‘\r’); // wait for “OK\r”
// set the destination address, 16-bit addressing.
// if using two radios, one radio’s destination
// should be other radio’s MY address, & vice versa:
 Serial.print(“ATDH0, DL0\r”);
// set my address using 16-bit addressing:
 Serial.print(“ATMY”);
 Serial.print(my_id);
 Serial.print(“\r”);

// set the PersonalAreaNetork ID
 Serial.print(“ATID0\r”);
 Serial.print(“ATBD4\r”); //transfer speed 19200KB/s
 //commit changes to memmory
 Serial.print(“ATWR\r”);
 // put the radio in data mode:
 Serial.print(“ATCN\r”);// exit command mode
}

Day 02 Working with Zigbee over Serial

07

Day 03 Creating a Working Prototype

Prototyping

Once the Processing Sketch was working properly I decided to start
prototyping the circuit using a basic breadboard.

In this setup it was easy to add rows of LEDs and wire them to an
Arduino mini.

One thing that became apparent during this setup was that I was not
going to be able to dim the LEDs as I had intended in the original brief,
as the mini only had a limited number of PWM (Pulse Width Modula-
tion) outputs.

Deciding on Height

Also I had decided that my maximum rows (height) of LEDs that I was
going to have was 11, as there are exactly 11 outputs on the Arduino
(not counting pins 1TX, 2RX or 13).

Apparently there is a way to control more than 11 but this inolved some
duplexing and considering the time restraints I decided that this was
out of the scope of this project.

08

Using a Buffer

I noticed that the data that I was sending was almost always getting to
the Xbee but not quite, sometimes a character would be lost here and
there and would throw off the values I was expecting. It was for this
reason that I decided to create a buffer array in Arduino.

In the above snippet of code my function handleSerial() is getting
the incoming raw data.

I am then going through the variable inByte and putting it into an
array called inString. I also have a check for ascii value 42 which is
the * delimiter I am using to signify the end of my data packet.

As soon as the Arduino comes across the * then it starts to evaluate
which LED sequence to light.

void handleSerial(){

 inByte = Serial.read();
 //debug.print(inByte);
 if (inByte != 42){
 inString[stringPos] = inByte;
 stringPos++;
 }
 else{
 // process incoming

Once I had the base station connected to the computer and was getting
Processing to send my data through the Xbee, I connected it to the
Prototype.

Day 04 Communicating through Zigbee’s

09

Serial Terminal Program displaying
Xbee Values

Scaling the Production

Once the first one was out of the way, the rest was pure grunt work. I also
scaled down slightly the number of LED’s so that I could make it a bit less
soldering for myself and meet my self imposed five tie quota by Friday.

Friday Oct 31st, 2am

Spent alot of late nights soldering the boards but finally made it. I had
one more day to embed the circuits into the tie’s but I was confident it
wouldn’t be too much trouble.

The first one was the hardest. Just figuring out where everything goes
and not being all that great at soldering. But I managed to get a pretty
compact’ish circuit board that worked.

Day 05 Soldering Madness

10

Day 06 Embedding the Technology

11

Playing with Fabric

I now needed to burn holes through the ties to the spacing and size of the
LEDs. I did this using a soldering gun which worked nicely but since the
tie’s were of a polyester fabric, it was quite toxic.

Then I poke the LEDs through the holes, trying to be careful enough not to
break any connections, as it could be a nightmare to trouble-shoot.

After the circuit’s were in place I stitched a seam in the back of the tie to
bind it enough so no loose material was visible from the front, but you
could still access the Xbee and Arduino Mini if you needed to.

The final step was to create a small pocket/compartment for the 9V bat-
tery which would eventually power the Tie.

My Five Tie’s

Poking the LEDs through Stitching the Back

Burning the Holes

5V

3.3V

VCC

DOUT

DIN Xbee
MaxStream

GND

+9VTX

TX R
X +
5V

G
R
O
U
N
D

+
5V

G
R
O
U
N
D

RX

GROUND
n,c

2

3

4

5

6

7

8

9

+5V
U2

AD3

AD2

AD1

AD0

13

12

11

10

GROUND

A
N
A
LO
G

RESET

D
IG
IT
A
L

D
IG
IT
A
L

Tie Construction

Power

To help assist in the compact design I wanted to use a 9V battery but in
some initial tests, found that it was too much juice for the Arduino Mini to
handle. I decided to put a 5V Voltage Converter between the 9V and the
Mini. This helped cap the Voltage.

I used another one in the setup betweeen the Mini and the Xbee convert-
ing from 5V down to 3.3V so as not to damage the Xbee.

One thing that I missed in this setup, if I was to do it again was to include
some resistors for the LEDs. They simply draw too AMPs from the 9V and it
only takes roughly 45mins to drain the battery.

Another feature that I should have included are switch’s so that you don’t
have to constantly plug/unplug the battery for demo’s.

12

Final Result

13

It was a busy week, and I encountered some of my own hardware and
software limitations but I felt that by the end I had overcome them.

The venue was a great way to showcase our efforts and try the concepts/
installations out on real people. There was the added dimension of making
everything “party proof”.

My intention was to have the music that was already playing play another
role and be dispersed around the room visually.

In the end I was happy with the results as it added to the atmosphere of
the event and prompted discussion from other people in the room.

To view the video of the Tie’s at the Halloween Party click here

Monday Wednesday Friday

Tuesday Thursday Saturday

Got processing to work with
the minim sound library

Got Xbee broadcasting values
to other Xbees on the same
Personal Area Network

Finished soldering my first
board

Recruited 5 volunteers to
showcase the ties at the
event

Started embedding circuits
into the ties.

Created working prototype of
audio meter.

Got the buffer working, started
transmitting wirelessly

Trouble with data over serial
and data being lost

Size of the setup is too bulky
using the Arduino Diecimila

Burning holes through the
polyester was really toxic

Having trouble getting an immedi-
ate response with audio over Xbee

Have to solder 4 more boards to
meet my quota.

When testing boards we found circuits use
too much power and drain battery quickly

Solution: Built a buffering array in
the receiving Xbee

Solution: Cleaned up some of my
processing code, found unnesses-
sary loops, was multiplying data

Solution: stayed till 2am but got
them all soldered

Solution: Decided to release the
Tie’s at the venue for only 1 hour

Solution: migrated over to the
Arduino mini’s and Nano.

Solution: conduct it in a better
ventilated environment or wear
mask

Solution: Decided instead to simply
turn on and off the LEDs and use
the max number of output pins

Had to get rid of the idea of
having LEDs dimming due to
number of PWM outputs.

The Week at a Glance

14

Links

Example Xbee Scripts from an Arduino Workshop
	 http://www.makingsenseofspace.com/arduino-wireless-workshop/

Minim Library Reference
	 http://code.compartmental.net/tools/minim/
	
Arduino SoftSerial Interface Reference
	 http://www.arduino.cc/en/Tutorial/SoftwareSerial

Books

Making Things Talk- Practical Methods for Connecting Physical Objects
	 Author: Tom Igoe, ISBN 13: 9780596510510

Resources

15

